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The Hartman effect inside the one-dimensional photonic crystals(1DPC’s) composed of negative index
materials(NIM’s ) is always negative and is reversed to the Hartman effect inside the 1DPC’s composed of
positive index materials(PIM’s). By calculating the phases of Fourier components of a pulse accumulated
inside the 1DPC’s of NIM’s and the evolution of the pulse inside the 1DPC’s of NIM’s, the origin of the
negative phase time is explained. The evolution of the electromagnetic fields inside the 1DPC’s of NIM’s is
time reversal with conjugate to that inside the 1DPC’s of PIM’s for real spectral pulses. An example for the
practical applications to obtain the negative phase time is illustrated.
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Photonic crystals(PC’s) have attracted a lot of attention in
the last decade due to their unique electromagnetic properties
and potential applications[1,2]. The photonic band-gap
structure(PBGS) originates from the interference of light
(i.e., Bragg scattering) inside the periodic dielectric structure.
Within the PBG, the electromagnetic field is evanescent. Due
to the analogy between the light in the photonic band gap
and an electron in a quantum barrier, the one-dimensional
photonic crystals(1DPC’s) acting as optical barriers were
used to investigate the tunneling time[3,4]. In quantum me-
chanics, the tunneling time of a particle passing through a
barrier is independent of the barrier length[5]. Such a phe-
nomenon sometimes is called the Hartman effect[6], which
implies superluminal and arbitrarily large(group) velocities
inside long barriers. The phase time of a wave packet passing
through 1DPC’s composed of the positive index materials
(PIM’s) is always positive[3,4,7–10]. The dynamic evolu-
tion of electromagnetic fields in a 1DPC with the PIM’s has
been investigated in detail[11,12].

As contrasted with the PIM’s, negative index materials
(NIM’s ), which were first predicted by Veselago in 1968
[13], possess simultaneously negative permittivity« and
negative permeabilitym. The existence of such materials
with a negative refractive indexsn,0d was demonstrated
experimentally in recent years[14], and NIM’s have become
a new research topic[15,16] because of their extraordinary
properties such as negative refraction[17], antiparallel
group, and phase velocities(backwards waves) [13]. The
NIM’s sometimes are also called left-handed materials

(LHM’s ) sinceEW , HW , andkW form a left-handed relation. One
of the most striking potential applications of the NIM’s is
Pendry’s perfect lens[18]. Recently, the photon tunneling in
1DPC with a layer of negative refractive index was investi-
gated[19], and it was found that the photons could tunnel
through a much greater distance when a NIM is included in
the 1DPC under certain conditions. In a stack of positive and
negative index materials corresponding to zero(volume) av-
eraged refractive index, a different type of PBGS, called the
zero average index gap, has been found[20], which is invari-
ant upon a change of scaling and is insensitive to the disor-

der; and an omnidirectional gap[21] is also discovered. In
Ref. [34], Manga Rao and Dutta Gupta discussed the pulse
propagation throught the 1DPC consisting of alternating lay-
ers of PIM’s and NIM’s, and they showed the superluminal
(or subluminal) velocities inside zero averaged index gap(or
at the band-edge resonances). Theoretical calculations pre-
dicted that the photonic crystals could exhibit a negative re-
fractive index in the near infrared[22] and optical frequen-
cies [23].

In this paper, we consider the propagation of a light pulse
passing through the 1DPC composed of NIM’s. We use the
transfer-matrix method[11,12,24] to calculate the transmit-
tance and reflectance of a light pulse passing through the
1DPC’s of both NIM’s and the conventional PIM’s. The
phase time in the conventional 1DPC’s(composed of PIM’s)
is always positive[3,4,7–10]. Contrast to the conventional
Hartman effect in 1DPC’s composed of PIM’s, the Hartman
effect in 1DPC’s of NIM’s is found to be negative. In order
to explain this, we investigate the phase time of each Fourier
component of the pulse and the dynamic evolution of the
electric and magnetic fields of the pulse inside such a nega-
tive index 1DPC. We also give out an example to illustrate
how to realize the negative phase time in a practical case. It
should be pointed out that the effect of the negative phase
time can also occur in the cases of a particle scattered by a
potential well[25] and light propagation in waveguides[26].

Consider a symmetrical 1DPC with the structure of
sABdNA, where A and B represent two kinds of different
NIM’s, and N denotes the periodic number. The relative per-
mittivity and permeability of these two media are denoted by
«i and mi si =A,Bd, respectively. Please note that when«i

,0 andmi ,0, thenni ,0. The thickness of each layer sat-
isfies uniudi =l0/4, wherel0 is the center wavelength of the
incident pulse (corresponding to the midgapv0 of the
1DPC’s). First, we have not considered the dispersion of
NIM’s, and «i andmi are assumed to be constant. Let a light
pulse inject from vacuum into 1DPC at an incident angleu0.
Here we only consider the transverse electric(TE) plane-
wave pulse(similar resuts can be obtained for transverse
magnetic plane-wave pulse). For the TE wave, the electric
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field EW is assumed in thex direction(dielectric layers inxy plane), and thez direction is normal to the interface of each layer.
In general, the electric and magnetic fields at two positionsz andz+Dz in the same layer can be related via a transfer matrix
[11,12],

MsDz,vd =1 cosfkzDzg i
mi

hÎ«imi − sin2 u0

sinfkzDzg

i
hÎ«imi − sin2 u0

mi
sinfkzDzg cosfkzDzg 2 , s1d

where kz=sv /cdhÎ«imi −sin2 u0, the signh= +1 for PIM’s
and h=−1 for NIM’s, c is the light speed in vacuum. Then
the transmission coefficienttsvd and reflection coefficient
rsvd can be obtained from the transfer matrix method
[11,12],

rsvd =
fq0x22svd − qsx11svdg − fq0qsx12svd − x21svdg
fq0x22svd + qsx11svdg − fq0qsx12svd + x21svdg

,

s2d

tsvd =
2q0

fq0x22svd + qsx11svdg − fq0qsx12svd + x21svdg
,

s3d

whereq0=hÎ«0m0−sin2 u0/m0 for the vacuum of the space
z,0 before the incident end andqs=hÎ«sms−sin2 u0/ms for
the substrate after the exit end. Herexijsvd si , j =1,2d are the
matrix elements ofXNsvd=p j=1

N Mjsdj ,vd which represents
the total transfer matrix connecting the fields at the incident
end and at the exit end. The phase time is often used to
describe the pulse propagation[27]. By setting tsvd
= utsvduexpfiftsvdg and rsvd= ursvduexpfifrsvdg [where the
real functionsft,rsvd are the phases of the transmission and
the reflection coefficients, respectively], the phase times for
the transmitted and reflected pulses are calculated astt,rsvd
=]ft,r /]v [28,29]. The transmitted phase shift can be ob-
tained fromtsvd by using the method described in Ref.[30].
Let tsvd=xsvd+ iysvd, then ft=tan−1sy/xd±mp is the total
phase accumulated as light propagating inside the medium.
Here the integerm is uniquely defined by assuming thatft is
a monotonic function, and the condition thatm=0 asv→0
is satisfied. To calculate the phase time, we use the following
way. Fromtsvd= utsvduexpfiftsvdg, we have

]ftsvd
]v

= iS 1

utsvdu
]utsvdu

]v
−

1

tsvd
]tsvd
]v

D . s4d

Using tsvd=Reftsvdg+ i Imftsvdg, we have

]utsvdu
]v

= F 1

utsvduGSReftsvdgH ] Reftsvdg
]v

J + Imftsvdg

3H ] Imftsvdg
]v

JD .

From these relations, we finally get the transmitted phase
time,

ttsvd =
]ft

]v
=

1

utsvdu2
SReftsvdg

] Imftsvdg
]v

− Imftsvdg
] Reftsvdg

]v
D . s5d

By similar steps, we can also obtain the reflected phase time,

trsvd =
]fr

]v
=

1

ursvdu2
SRefrsvdg

] Imfrsvdg
]v

− Imfrsvdg
] Refrsvdg

]v
D . s6d

From the above two equations, the transmitted and reflected
phase times can be obtained from the real and imaginary
parts of transmission and reflection coefficients, respectively.
By Eqs. (5) and (6), we do not need to calculate the phase
shifts for the transmitted and reflected light fields in order to
get the phase timestt,rsvd at frequencyv.

In Fig. 1, we show the dependence of the transmitted
phase time on the periodic numberN for two kinds of
1DPC’s with the symmetric structuresHLdNH and the
vacuum on both sides:(a) for NIM’s and (b) for PIM’s at
normal incidence. The transmitted phase times at the midgap
of the PBG of NIM’s are always negative, and tends to a
negativeconstant as the periodic numberN increases. This
indicates that the group velocityvg in the PBG of NIM’s
goes to benegative infinity. In the conventional 1DPC’s of
PIM’s, however, the transmitted phase time(at v0) is always
positive and goes to a positive constant as the periodic num-
ber N increases as shown in Fig. 1(b) [3,4]. Comparing two
insets in Fig. 1, we find that there is no difference in the
transmittances of these two kinds of 1DPC’s because both
the structures of the PBG’s of NIM’s and PIM’s are raised
from the Bragg scattering(i.e., the interference between the
forward waves and the backward waves). The difference be-
tween 1DPC’s of NIM’s and that of PIM’s is the transmitted
(or reflected) phase shift accumulated during light passing
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through(or reflected by) the 1DPC’s. For the reflected phase
times, we have the results similar to that of the transmitted
phase times for such lossless symmetric systems[30,31].
Therefore we may call the tunneling effect in 1DPC’s with
PIM’s as positive Hartman effect, whilenegativeHartman
effect in the case of NIM’s.

In order to understand the negative transmitted phase time
in 1DPC’s of NIM’s, we examine the phase shift and inves-
tigate the evolution of a light pulse propagating through a
symmetric 1DPC with the structure ofsABd5A. In the case of
normal incidence, for TE plane-wave light pulses, the elec-
tric field is in thex direction and the magnetic field is in the
y direction. Using the method developed in Refs.[11,12],
we can find the electromagnetic fields inside the 1DPC
satisfying

Exsz,vd = Esids0,vdhf1 + rsvdgQ11sz,vd

+ q0f1 − rsvdgQ12sz,vdj, s7d

cHysz,vd = Esids0,vdhf1 + rsvdgQ21sz,vd

+ q0f1 − rsvdgQ22sz,vdj, s8d

whereEsids0,vd is the incident pulse spectrum, andQijsz,vd
are the elements of the matrix Qsz,vd
=MjsDz,vdpi=1

i=j−1Misdi ,vd, wherez=Dz+oi=1
i=j−1di represents

any position inside the 1DPC andDz is the distance from the
point within the j th layer to the interface betweenj th and
s j −1dth layers.

For the 1DPC’s composed of NIM’s, when each layer
satisfies the relation:«i

NIM=−«i
PIM andmi

NIM=−mi
PIM, we have

MNIMsDz,vd=fMPIMsDz,vdg*, which leads to Qij
NIMsz,vd

=fQij
PIMsz,vdg*, rNIMsvd=frPIMsvdg* and tNIMsvd

=ftPIMsvdg*. Consequently, we have La
NIMsz,vd

=fLa
PIMsz,vdg* sa=E,Hd, where LEsz,vd

;f1+rsvdgQ11sz,vd+q0f1−rsvdgQ12sz,vd and LHsz,vd
;f1+rsvdgQ21sz,vd+q0f1−rsvdgQ22sz,vd. That is to say,
the phase shift inside 1DPC’s of NIM’s is reversed to that
inside 1DPC’s of PIM’s. In Fig. 2, we plot the phase shifts
for both NIM’s and PIM’s cases. In the conventional 1DPC’s
of PIM’s, the transmitted phase shift increases monotonically
as frequency and is always positive. However, for the case of
NIM’s the transmitted phase shift is alwaysnegativedue to
the negative refractive index, and decreases monotonically as
frequency increases. Therefore the transmitted phase time for
NIM’s is negative as shown in Fig. 1.

Now let us to look at the evolutions of the electromag-
netic fields inside the 1DPC. The electric and magnetic fields
in the same unit are, respectively, given by[11]

Exsz,td =E Esidsz,vde−ivtdv, s9d

FIG. 1. The dependence of the transmitted phase time delayt on
the periodic numberN at the center frequencyv0 of the PBG with
the structuresABdNA: (a) for the NIM’s; (b) for the PIM’s. Two
insets are the transmittances for both cases, respectively. Here we
choose «A

NIM=−«A
PIM=−16.0, mA

NIM=−mA
PIM=−1.0, and «B

NIM

=−«B
PIM=−4.0,mB

NIM=−mB
PIM=−1.0.

FIG. 2. The phase shifts of light passing through the 1DPC with
the symmetric structuresABd5A. Solid line for NIM’s and dashed
line for PIM’s. Other parameters are the same as in Fig. 1.
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cHysz,td =E Esidsz,vde−ivtdv. s10d

From Eqs. (9) and (10), when the incident spectrum
Esids0,vd is real, it is easy to prove the following relations:
Ex

NIMstd=fEx
PIMs−tdg* and Hy

NIMstd=fHy
PIMs−tdg*. It is to say

that the propagation of the fields in 1DPC of NIM’s is just
the time reversal with conjugate comparing with the propa-
gation of the fields inside 1DPC of PIM’s. As an example,
we consider the propagation of a Gaussian pulse through the
1DPC’s. At the incident end, its electric field isEisz=0,td
=A0 expf−t2/2t0

2g expf−iv0tg, whereA0 is a constant,t0 is
the pulse width, andv0 is the center frequency of the pulse
and is also equal to the midgap of the PBG at the normal
incident case. Its Fourier spectrum is given byEisz=0,vd
=st0A0/2Îpd expf−t0

2sv−v0d2/2g. In our numerical calcula-
tions, we taket0=56v0

−1 which corresponds to the spectral
width Dv<0.0177v0. This means that the spectrum of the

incident pulse is very narrow, and is within the PBG’s of the
NIM’s and PIM’s 1DPC’s. Figures 3(a) and 3(b) show the
evolutions of the total electric fields of the light pulses inside
the NIM’s and PIM’s 1DPC’s, respectively, under the normal
incident case. From Figs. 3(a) and 3(b), we find that the total
electric fields in the 1DPC of NIM’s areconjugatedand re-
versedto that in the 1DPC of PIM’s. There are similar results
for the total magnetic field. Figure 3(c) shows the intensity
profiles of the transmitted and incident pulses when the pulse
propagates through the 1DPC of NIM’s, and we find that the
transmitted pulse is advanced before the incident pulse hit-
ting on the interface of the incident end. Compared with the
case of light pulses through the 1DPC of NIM’s[as shown in
Fig. 3(c)], the transmitted pulse through the 1DPC of PIM’s
[see Fig. 3(d)] is delayed after the incident pulse because of
the positive phase time delay. Therefore the phase time for
the 1DPC’s of NIM’s is reversed to that for the 1DPC’s of
PIM’s. When the incident spectrumEsids0,vd is complex,
i.e., the initial phases of the Fourier components of the inci-
dent pulse are not equal to zero, the negative phase shift
induced by the 1DPC’s of NIM’s will reduce the initial
phases, which leads to the advancement of the transmitted
phase time. However, the phase shift induced by the 1DPC
of PIM’s always increases the initial phases of the Fourier
components of the incident pulse. In a short, negative refrac-
tion index in 1DPC’s leads to negative phase shifts, which
makes the phase time negative, i.e., negative Hartman effect.

Due to the symmetric structure of the 1DPC that we have
considered above, the reflected phase time is the same as the
transmitted phase time[31]. While for the asymmetrical
structures such as sABdN, sABdN–substrate, or
sABdNA–substrate(here we assume the substrate to be differ-
ent from the vacuum), the reflected phase time delay is very
different from the transmitted phase time delay. For example,
in Fig. 4, we plot the reflected and transmitted phase times

FIG. 3. (Color online) The evolution of the real and imaginary
part of the electric fields inside the 1DPC of the structuresABd5A
with (a) NIM’s and (b) PIM’s; and the normalized intensity profiles
of the incident pulse(dashed line) and the transmitted pulse(solid
line) for the 1DPC’s with(c) NIM’s and (d) PIM’s. Other param-
eters are the same as in Fig. 1.

FIG. 4. The phase time delays of light injecting into the 1DPC
with asymmetric structuresABd5A–substrate:(a) for NIM’s and (b)
for PIM’s. Solid line for ttsvd and dashed line fortrsvd. Here the
substrate is of«s=2.25 andms=1.0 for both cases. Other parameters
are the same as in Fig. 1.
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for the structure vacuum–sABd5A–substrate composed of(a)
NIM’s and (b) PIM’s, respectively. Here we assume the sub-
strate layer is semi-infinite and has the property of«s=2.25
andms=1.0 (a nonmagnetic PIM). A light pulse enters 1DPC
from the vacuum end. From Fig. 4, we know that the phase
timestt,rsvd are different for the transmitted and the reflected
fields. For the 1DPC of NIM’s, in the PBG region, both of
them are negative. Near the resonant peak in transmittance,
we find that the reflected phase time is totally different from
the transmitted phase time: for the reflected phase time, it
becomes highly positive, and for the transmitted phase time,
it is negative. While for the 1DPC’s of PIM’s, we find the
result is opposite to that inside the 1DPC of NIM’s: the trans-
mitted phase time is always positive; the reflected phase time
is also positive in the frequency region of the PBG, and is
highly negative near the resonant transmission region. Here
we would like to emphasize thattt

NIMsvd=−tt
PIMsvd and

tr
NIMsvd=−tr

PIMsvd, i.e., the time delays for NIM’s are al-
ways opposite to the time delays for PIM’s under the cases
that each layer of the 1DPC’s satisfies the relation«i

NIM=
−«i

PIM andmi
NIM=−mi

PIM. Please note that the reflected phase
time trsvd and the transmitted phase timettsvd satisfy the
relation [32] tDsvd= ursvdu2trsvd+ utsvdu2ttsvd, wheretDsvd
is the dwell time at frequencyv. Obviously, for the 1DPC’s
of NIM’s, the dwell timetD is negative, whiletD is positive
for that of PIM’s.

Finally, we give an example to discuss the case that both
«i andmi (i =A andB) of these two materials are dispersive.
Dutta Guptaet al. [33] investigated the transmitted phase
time in the propagation of narrow-band pulses through a dis-
persive NIM’s slab; the transmitted phase time in Ref.[33]
can never be negative due to normal dispersion in the fre-
quency range of the negative refraction index. We also find
that the transmitted phase time of light pulses passing
through the 1DPC of alternating layers of PIM’s and NIM’s
(as in the cases of Refs.[20,34]) is positive due to the dis-
persion. In fact, from the definition of the group index
ngsvd=Refnsvdg+vdhRefnsvdgj /dv [where nsvd is the
complex refraction index], in order to obtain the negative
phase time(or group delay), there are two ways for the
NIM’s: the first one is to find the large negative refractive
index Refnsvdg and the second one is to reduce the second
term (that is to reduce normal dispersiondhRefnsvdgj /dv or
even to find the value ofdhRefnsvdgj /dv to be negative as
pointed out by Mojahediet al. [29]). It is reasonable to sup-
pose that the relative permittivities and permeabilities of the
two materials are «i =ai −svadi

2/ fsvodi
2−v2g and mi =bi

−svbdi
2/v2 (i =A and B), respectively, and the dampings of

two materials are omitted. Such relative permittivities, for
instance, can be realized by doping inverted two-level atoms
in the GHz frequency range; and such relative permeabilities
can be realized by utilizing split ring resonators[35]. In our
numerical calculation, we chooseaA=bA=bB=1.0,aB=1.41,
svadA=25 GHz, svadB=41 GHz, svodA=22 GHz, svodB

=27 GHz,svbdA=35 GHz, andsvbdB=25 GHz. In this case,
for material A, the frequency range of RefnAsvdg,0 is
s0,22 GHzd; for material B, the range of RefnBsvdg,0 is
s0,27 GHzd. In each period, the thicknesses of the two ma-
terials aredA=5 cm anddB=2 cm. Figure 5 shows the trans-

mitted phase time delay in 1DPC with the structure ofsABd16

at the frequency range of both RefnAsvdg,0 and
RefnAsvdg,0. Inset (a) shows the transmittance of such a
1DPC in the corresponding frequency range, and inset(b)
shows the refraction indices for materialsA andB. It is clear
that the phase time delay for the transmitted light is nearly a
negative constant inside the PBG’s and highly negative at the
edges of the PBG’s. From inset(b), we see that the disper-
sion of the materials are not large in this example. For the
practical applications, the dispersion of the NIM’s should be
controlled to be small in order to obtain the negative phase
time delays.

In conclusion, we have investigated the Hartman effect
inside the 1DPC’s of NIM’s. We find that the Hartman effect
is always negative inside the NIM’s and is reversed to the
case inside the PIM’s. By calculating the phase accumulated
inside the 1DPC’s of NIM’s and the evolution of a light pulse
inside the 1DPC’s of NIM’s, we explain why the phase times
for the transmitted and reflected light pulses are negative. We
have also shown that the total electromagnetic fields inside
the 1DPC’s of NIM’s are very unusual, conjugated and re-
versed to that in 1DPC’s of PIM’s under certain conditions.
For the asymmetric structure of 1DPC’s with NIM’s, we find
that the reflected phase time is positive at the transmitted
resonant region, while the transmitted phase time is always
negative. An example is also given to illustrate how to obtain
the negative phase time delays when the materials are dis-
persive.

This work was supported by RGC and CA02/03.SC01
from HK Government, and FRG from Hong Kong Baptist
University.

FIG. 5. (Color online) The phase time delays of light passing
through the 1DPC with the structuresABd16. Inset (a) shows the
transmittance of the 1DPC and inset(b) shows the refraction indices
of materialsA andB. The parameters of materialsA andB areaA

=bA=bB=1.0, aB=1.41, svadA=25 GHz, svadB=41 GHz, svodA

=22 GHz, svodB=27 GHz, svbdA=35 GHz, and svbdB=25 GHz,
and the thicknesses aredA=5 cm anddB=2 cm.
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