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Negative Hartman effect in one-dimensional photonic crystals with negative refractive materials
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The Hartman effect inside the one-dimensional photonic cry$idld*C's composed of negative index
materials(NIM’s) is always negative and is reversed to the Hartman effect inside the 1DPC’s composed of
positive index material$PIM’s). By calculating the phases of Fourier components of a pulse accumulated
inside the 1DPC’s of NIM’s and the evolution of the pulse inside the 1DPC’s of NIM’s, the origin of the
negative phase time is explained. The evolution of the electromagnetic fields inside the 1DPC'’s of NIM’s is
time reversal with conjugate to that inside the 1DPC'’s of PIM’s for real spectral pulses. An example for the
practical applications to obtain the negative phase time is illustrated.
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Photonic crystal$PC’s) have attracted a lot of attention in der; and an omnidirectional ggdR1] is also discovered. In
the last decade due to their unique electromagnetic properti¢sef. [34], Manga Rao and Dutta Gupta discussed the pulse
and potential applicationg1,2]. The photonic band-gap propagation throught the 1DPC consisting of alternating lay-
structure(PBGS originates from the interference of light ers of PIM’s and NIM's, and they showed the superluminal
(i.e., Bragg scatteringnside the periodic dielectric structure. (or sublumina) velocities inside zero averaged index gap
Within the PBG, the electromagnetic field is evanescent. Dugt the band-edge resonangeEheoretical calculations pre-
to the analogy between the light in the photonic band gapjicted that the photonic crystals could exhibit a negative re-
and an electron in a quantum barrier, the one-dimensiongtactive index in the near infraref22] and optical frequen-
photonic crystalg1DPC’y acting as optical barriers were cjes[23].
used to investigate the tunneling tirf@4]. In quantum me- In this paper, we consider the propagation of a light pulse
chanics, the tunneling time of a particle passing through ®assing through the 1DPC composed of NIM’s. We use the
barrier is independent of the barrier leng8]. Such a phe-  transfer-matrix method11,12,24 to calculate the transmit-
nomenon sometimes is called the Hartman efféftwhich  tance and reflectance of a light pulse passing through the
implies superluminal and arbitrarily larggroup velocities  1DPC’s of both NIM’s and the conventional PIM’s. The
inside long barriers. The phase time of a wave packet passinghase time in the conventional 1DP@mposed of PIM’s
through 1DPC’s composed of the positive index material§s always positive[3,4,7-1Q. Contrast to the conventional
(PIM’s) is always positive[3,4,7-1Q. The dynamic evolu- Hartman effect in 1DPC’s composed of PIM’s, the Hartman
tion of electromagnetic fields in a 1DPC with the PIM's haseffect in 1DPC's of NIM’s is found to be negative. In order
been investigated in detdil1,12. to explain this, we investigate the phase time of each Fourier

As contrasted with the PIM’s, negative index materia'SC()mponent of the pu|se and the dynamic evolution of the
(NIM’s), which were first predicted by Veselago in 1968 electric and magnetic fields of the pulse inside such a nega-
[13], possess simultaneously negative permittivityand  tive index 1DPC. We also give out an example to illustrate
negative permeabilityw. The existence of such materials how to realize the negative phase time in a practical case. It
with a negative refractive indetn<0) was demonstrated should be pointed out that the effect of the negative phase
experimentally in recent yeaf44], and NIM’s have become time can also occur in the cases of a particle scattered by a
a new research topifd5,16 because of their extraordinary potential well[25] and light propagation in waveguidg2].
properties such as negative refracti¢h7], antiparallel Consider a symmetrical 1DPC with the structure of
group, and phase velocitigbackwards waves[13]. The  (AB)NA, where A and B represent two kinds of different
NIM's sometimes are also called left-handed materialsNiM's, and N denotes the periodic number. The relative per-
(LHM’s) sinceE, H, andk form a left-handed relation. One mittivity and permeability of these two media are denoted by
of the most striking potential applications of the NIM’s is & and u; (i=A,B), respectively. Please note that when
Pendry’s perfect lengl8]. Recently, the photon tunneling in <0 andu; <0, thenn;<0. The thickness of each layer sat-
1DPC with a layer of negative refractive index was investi-isfies|n;|d;=\y/4, where\, is the center wavelength of the
gated[19], and it was found that the photons could tunnelincident pulse(corresponding to the midgam, of the
through a much greater distance when a NIM is included inLDPC’y. First, we have not considered the dispersion of
the 1DPC under certain conditions. In a stack of positive andNIM’s, and ¢; and w; are assumed to be constant. Let a light
negative index materials corresponding to zemume) av-  pulse inject from vacuum into 1DPC at an incident angje
eraged refractive index, a different type of PBGS, called theHere we only consider the transverse electii&) plane-
zero average index gap, has been fo[2(, which is invari-  wave pulse(similar resuts can be obtained for transverse
ant upon a change of scaling and is insensitive to the disomagnetic plane-wave pulseFor the TE wave, the electric
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field E is assumed in the direction(dielectric layers irxy plane, and thez direction is normal to the interface of each layer.
In general, the electric and magnetic fields at two positmasdz+Az in the same layer can be related via a transfer matrix
[11,12,

cogk,Az] I,*I— sink,AzZ]
_ i = Sint 6
M (AZ, (1)) - ”—'rlze ) (1)
NGk T SIT O Gy A7) cogk,A7]
Mi
|
where k,=(w/c) 7\sju;—Sir? 6, the signy=+1 for PIM’s diw) | 1 IRdt(w)]
and »=-1 for NIM’s, c is the light speed in vacuum. Then Jo It(w)| Ret(w)] Jw +Im[t(w)]
the transmission coefficiert{w) and reflection coefficient
r(w) can be obtained from the transfer matrix method v g Im[t(w)] )
(11,13, dw '
From these relations, we finally get the transmitted phase
time,
) = L80%220) = 611(0)] = [G0K12(0) = Xpr(@)] me
(o) + Goxas()] = [Aoloxaz @) +Xes(@)]’ P (th(w)]w
) o |t(w)]? dw
I Ret(w)]
= Im[t(w)] . ©)
Jw
- 290 By similar steps, we can also obtain the reflected phase time,
t(w) :
[AoXoa(@) + OsX11(w)] = [AolsX1a( @) + Xo1(w) ] b 1 JIm[r(w)]
r
=—= R _
IRdr(w)]
where go= 7\eouo—Sir? 6,/ uo for the vacuum of the space ~Imfr(w)]=—~—]. (6)

z< 0 before the incident end arg= 7\ equs—Sirt 6/ ug for . .
the substrate after the exit end. Hafgw) (i,j=1,2) are the From the above two equations, the transmitted and reflected
matrix elements otXN(w)=H}\‘:1Mj(dj,w) which represents phase times can be obtained from the real and imaginary

the total transfer matrix connecting the fields at the incidenP@'ts of transmission and reflection coefficients, respectively.
end and at the exit end. The phase time is often used tBY EAS:(5) and(6), we do not need to calculate the phase
describe the pulse propagatiof27]. By setting t(w) shifts for the transmitted and reflected light fields in order to

=|t(w)|exi ()] and r(w)=|r(w)|exdid (w)] [where the 9€t the phase times (w) at frequencyo. _
real functionse, (w) are the phases of the transmission and In F|g. 1, we show t_he_dependence of the _transmltted
the reflection coefficients, respectivglyhe phase times for phase' tlmghonhthe pe”Od'? numbér for t\'/\lvo klngs r?f
the transmitted and reflected pulses are calculatet &®) 1DPC's with the symmetric structuréHL)"H and the

=ddy [ dw [28,29. The transmitted phase shift can be ob- Vacuum on both sidega) for NIM's and (b.) for PIM's at
tained fromt(w) by using the method described in RES0]. normal incidence. The transmitted phase times at the midgap

Let t(w)=x(w) +iy(w), then ¢=tarr(y/x)+ma is the total of the PBG of NIM’'s are always negative, and tends to a

h mulated liaht or ting inside the medi negativeconstant as the periodic numbirincreases. This
E asethacq: uviated as gl gcf)_pa%ab g Insiae te €diUhdicates that the group velocityy in the PBG of NIM's

ere the integem IS uniquely detined by assuming hatis goes to benegative infinity In the conventional 1DPC'’s of
a monotonic function, and the condition that0 asw—0

is satisfied. To Ealculate the phase time, we use the foIIowing (I)I\S/IIEVQ C;Vr\:s\/; c:é;hteot;agigt'it\t/:dcgngaen?(:?;';102 Eearlilgvcizsnum-
way. Fromt(w)=[t(w)|ex{id(w)], we have berN increases as shown in Fig(b} [3,4]. Comparing two
insets in Fig. 1, we find that there is no difference in the
transmittances of these two kinds of 1DPC’s because both
(@) = ( 1 dt(w) _ iM) (4) the structures of the PBG’s of NIM's and PIM’s are raised
dw [t(w)| do t(w) dw |’ from the Bragg scattering.e., the interference between the
forward waves and the backward wayeBhe difference be-
tween 1DPC’s of NIM’s and that of PIM’s is the transmitted
Usingt(w)=Rdgt(w)]+i Im[t(w)], we have (or reflected phase shift accumulated during light passing
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FIG. 1. The dependence of the transmitted phase time deday
the periodic numbeN at the center frequenay, of the PBG with

For the 1DPC’s composed of NIM's, when each layer

satisfies the relations]"™ =-¢"™ and uM=-n"™, we have

MNM(Az, w)=[MPM(Az,w)]*, which leads to Qj™(z,w)

the structure(AB)NA: (a) for the NIM’s; (b) for the PIM’s. Two =[Q-P'M(Z,w)]*, rNIM(w):[rPIM(w)]* and tNIM( )

insets are the transmittances for both cases, respectively. Here \Aﬁtplﬂm(w)]* Consequently. we have ANIM(Z )
NIM___PIM_ _ NIM__ PIM_ _ NIM . ’ a ’

Choose on = e~ meir A A = L0 and g fpAPMG ) (g=E,H),  where  Ag(z)

=—gf™M=-4.0, uf™M=-pEM=-1.0.

=[1+r(0)]Q11(Z, @) +o[1-T(w)]Q1x(z,w) and Ap(z,w)
=[1+r(w)]Q21(z, w) +qo[ 1 -1 (w)]Q,x(z,w). That is to say,

through(or reflected bythe 1DPC'’s. For the reflected phase he phase shift inside 1DPC’s of NIM’s is reversed to that
times, we have the results similar to that of the transmitteqside 1DPC’s of PIM's. In Fig. 2, we plot the phase shifts
phase times for such lossless symmetric syst¢8@31.  for hoth NIM's and PIM’s cases. In the conventional 1DPC’s
Therefore we may call the tunneling effect in 1DPC’s with o p|\'s, the transmitted phase shift increases monotonically
PIM’s as positive Hartman effect, whilenegativeHartman 55 frequency and is always positive. However, for the case of
effect in the case of NIM's. _ _ ~ NIM’s the transmitted phase shift is alwapsgativedue to
~Inorder to understand the negative transmitted phase tim@e negative refractive index, and decreases monotonically as
in 1DPC’s of NIM's, we examine the phase shift and inves-frequency increases. Therefore the transmitted phase time for
tigate the evolution of a light pulse propagating through anv's is negative as shown in Fig. 1.

symmetric 1DPC with the structure 6AB)°A. In the case of Now let us to look at the evolutions of the electromag-
normal incidence, for TE plane-wave light pulses, the elecnetic fields inside the 1DPC. The electric and magnetic fields
tric field is in thex direction and the magnetic field is in the iy the same unit are, respectively, given [ly]

y direction. Using the method developed in Ref$1,12,

we can find the electromagnetic fields inside the 1DPC _ )
satisfying E.(zt) = f EV(z, w)e “'dw, (9)
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N 2 | incident pulse is very narrow, and is within the PBG’s of the
02 01 00 01 02 02 G100 o1 o2 NII\/:’st_and I:;Im,sthIIDCI,S.tFlgfw?ds @f ;ndl'gf?t) shlow t_he_d
. ) evolutions of the total electric fields of the |i ulses inside
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the NIM's and PIM’s 1DPC's, respectively, under the normal
incident case. From Figs(& and 3b), we find that the total
(C) (d) electric fields in the 1DPC of NIM’s areonjugatedandre-
versedo that in the 1DPC of PIM’s. There are similar results
FIG. 3. (Color onling The evolution of the real and imaginary for the total magnetic field. Figure(® shows the intensity
part of the electric fields inside the 1DPC of the struct(A8)°A  profiles of the transmitted and incident pulses when the pulse
with (a) NIM’s and (b) PIM’s; and the normalized intensity profiles propagates through the 1DPC of NIM’s, and we find that the
of the incident puls¢dashed lingand the transmitted pulgsolid  transmitted pulse is advanced before the incident pulse hit-
line) for the 1DPC's with(c) NIM's and (d) PIM's. Other param-  ting on the interface of the incident end. Compared with the
eters are the same as in Fig. 1. case of light pulses through the 1DPC of NIM&s shown in
Fig. 3c)], the transmitted pulse through the 1DPC of PIM’s
[see Fig. 8d)] is delayed after the incident pulse because of
the positive phase time delay. Therefore the phase time for
the 1DPC'’s of NIM’s is reversed to that for the 1DPC’s of
PIM’s. When the incident spectruB"(0,w) is complex,
i.e., the initial phases of the Fourier components of the inci-
From Egs. (9) and (10), when the incident spectrum f’e”t pulse are not EC]l’.la| to zer9, th_e negative ph"?‘s.e. shift
EV(0,w) is real, it is easy to prove the following relations: mr:juced bﬁ. tﬂel 13P(t: Strff NdlMS will riduf?hth? |n|t|alltt q
EylM(t):[EEIM(_t)J* and H’;IM(t):[HslM(_t)]*. It is to say pnases, wnich leads 10 the adavancement O e transmitte

. . . . 2 phase time. However, the phase shift induced by the 1DPC
that the propagation of the fields in 1DPC of NIM's is just ot pjp:g always increases the initial phases of the Fourier

the time reversal with conjugate comparing with the propa;omponents of the incident pulse. In a short, negative refrac-
gation of the fields inside 1DPC of PIM's. As an example, tjon index in 1DPC’s leads to negative phase shifts, which
we consider the propagation of a Gaussian pulse through th@akes the phase time negative, i.e., negative Hartman effect.
1DPC's. At the incident end, its electric field K(z=0,t) Due to the symmetric structure of the 1DPC that we have
=Ag exp{—t2/27§] exd -iwgt], whereAq is a constantr, is  considered above, the reflected phase time is the same as the
the pulse width, andy, is the center frequency of the pulse transmitted phase tim¢31]. While for the asymmetrical
and is also equal to the midgap of the PBG at the normastructures such as (AB)N, (AB)N-substrate, or
incident case. Its Fourier spectrum is given Byz=0,w)  (AB)NA-substratghere we assume the substrate to be differ-
= (798¢l 2\ m) exf—75(w—wp)?/2]. In our numerical calcula-  ent from the vacuui the reflected phase time delay is very
tions, we taker,=56w," which corresponds to the spectral different from the transmitted phase time delay. For example,
width Aw=0.017%,. This means that the spectrum of the in Fig. 4, we plot the reflected and transmitted phase times

cH,(zt) = f EV(z, w)e“dw. (10)
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for the structure vacuunfAB)°A—substrate composed (d) o T T

NIM’s and (b) PIM’s, respectively. Here we assume the sub- 0

strate layer is semi-infinite and has the propertyegf2.25 2 1 10

and us=1.0(a nonmagnetic PIM A light pulse enters 1DPC . _5| 8 %%1 )

from the vacuum end. From Fig. 4, we know that the phase s, g

times T, (w) are different for the transmitted and the reflected o ] £ o2

fields. For the 1DPC of NIM’s, in the PBG region, both of 8 -101 oo

them are negative. Near the resonant peak in transmittance® ] Beaens o taie) 18

we find that the reflected phase time is totally different from £ 2ol )

the transmitted phase time: for the reflected phase time, i'q -151 é‘é;

becomes highly positive, and for the transmitted phase time & ; sal =T .

it is negative. While for the 1DPC’s of PIM’s, we find the g 204 E%F

result is opposite to that inside the 1DPC of NIM’s: the trans- T 55

mitted phase time is always positive; the reflected phase time I ¢ B 10 12 14 1618

is also positive in the frequency region of the PBG, and is  -25 — 'eq".mym.( z). —
highly negative near the resonant transmission region. Her¢ 6 8 10 12 14 16 18
we would like to emphasize thaf"™(w)=-7"™(w) and Frequency o (GHz)

7M(w)=-7"™(w), i.e., the time delays for NIM’s are al-
ways opposite to the time delays for PIM’s under the cases FIG. 5. (Color onling The phase time delays of light passing
that each layer of the 1DPC’s satisfies the relaﬁxﬁwz through the 1DPC with the structuf@B)!®. Inset(a) shows the
-gf™ and "™ =-u""™. Please note that the reflected phasetransmittance of the 1DPC and ingbj shows the refraction indices
time 7.(w) and the transmitted phase timgw) satisfy the  of materialsA andB. The parameters of materiatsandB are a,
relation [32] 7p(w)=|r(w)[?7(w)+|t(w)*r(w), where rp(w)  =Pa=Pe=1.0, 8g=1.41, (wa)a=25 GHz, (w)g=41 GHZ, (wo)a
is the dwell time at frequency. Obviously, for the 1DPC’'s =22 GHZ, (wo)g=27 GHz, (wy)4=35 GHz, and(wy)=25 GHz,
of NIM's, the dwell time 7 is negative, whiler, is positive ~ 2nd the thicknesses adg=5 cm anddg=2 cm.
for that of PIM’s.

Finally, we give an example to discuss the case that both . . . .
g and ,u,iy(i :A%nd B) of thes% two materials are dispersive. mitted phase time delay in 1DPC with the structuréA)*®
Dutta Guptaet al. [33] investigated the transmitted phase @ the frequency range of both [Rg(w)]<0 and
time in the propagation of narrow-band pulses through a disR€lna(w)]<0. Inset(a) shows the transmittance of such a
persive NIM’s slab; the transmitted phase time in R88]  1DPC in the corresponding frequency range, and iciset
can never be negative due to normal dispersion in the freshows the refraction indices for materidlsandB. It is clear
quency range of the negative refraction index. We also findhat the phase time delay for the transmitted light is nearly a
that the transmitted phase time of light pulses passingegative constant inside the PBG’s and highly negative at the
through the 1DPC of alternating layers of PIM's and NIM’s edges of the PBG’s. From ins€t), we see that the disper-
(as in the cases of Reff20,34) is positive due to the dis- sjon of the materials are not large in this example. For the
persion. In fact, from the definition of the group index practical applications, the dispersion of the NIM’s should be
Ny(w)=ReNn(w)]+wd{ReNn(w)]}/dw [where n(w) is the  controlled to be small in order to obtain the negative phase
complex refraction index in order to obtain the negative time delays.
phase time(or group delay, there are two ways for the | conclusion, we have investigated the Hartman effect
NIM’s: the first one is to find the large negative refractive jside the 1DPC’s of NIM's. We find that the Hartman effect

index Rén(w)] and the second one is to reduce the secondy ajways negative inside the NIM's and is reversed to the
term (that is to reduce normal dispersidfRe[n(w)]}/dw or 456 inside the PIM's. By calculating the phase accumulated

even to find the value of{Ren(w)]}/dw to be negative as  jnside the 1DPC’s of NIM's and the evolution of a light pulse
pointed out by Mojahedet al. [29]). It is reasonable to sup- inside the 1DPC’s of NIM's, we explain why the phase times
pose that the relative permittivities and permeabilities of theq the transmitted and reflected light pulses are negative. We

, (N2 2_ 2 -
two rznat;an.als are &;=g~ (wp)i /[(wo)i —@°] and =B Laye 4150 shown that the total electromagnetic fields inside
~(wp)i/w® (i=A andB), respectively, and the dampings of o 1ppC's of NIM's are very unusual, conjugated and re-

two materials are omitted. Such relative permittivities, forversed to that in 1DPC’s of PIM's under certain conditions.
!nstance, can be realized by doping mverte(_j two-level a.tpm?—or the asymmetric structure of 1DPC'’s with NIM’s, we find
in the GHz frequency'r_apge; arjd .SUCh relative permeabllltle§nat the reflected phase time is positive at the transmitted
ﬁﬁ?ngﬁ craelagglecﬂlgi/i Our;ullvzvlgg(]:sg(l)lt ”E% rgst,)orlalt%&i]._lrl (Zlulr resonant region, while the transmitted phase time is always
: S@=Da=0p= 21, 8= 144, negative. An example is also given to illustrate how to obtain

(wa)p=25 GHz, (w,)g=41 GHz, (wy)a=22 GHz, (wy)g . : . o
=27 GHz,(wp)n=35 GHz, andwy)g=25 GHz. In this case, tpheersriuveegatlve phase time delays when the materials are dis

for material A, the frequency range of Re(w)]<O0 is
(0,22 GH32; for material B, the range of Rag(w)]<0 is This work was supported by RGC and CA02/03.SC01
(0,27 GH3. In each period, the thicknesses of the two ma-from HK Government, and FRG from Hong Kong Baptist
terials ared,=5 cm anddg=2 cm. Figure 5 shows the trans- University.
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